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Abstract. Modern software systems can feature complex data process-
ing, with multiple parties processing various data for di!erent purposes, 
including training or application of AI. Development of such systems 
typically involves a multidisciplinary team with di!erent viewpoints. 
To e!ectively and efficiently design for privacy requires a multidisci-
plinary and coordinated e!ort. We introduce Data Processing Diagrams, 
an extension of popular Data Flow Diagrams, with standardized nota-
tion for fundamental forms of data processing such as data deletion, dis-
tribution, encryption and pseudonymization/anonymization. With these 
extensions, application of well-known privacy design strategies and tac-
tics in complex data processing systems can be reflected. We consider 
this crucial for unambiguous communication, especially in the earliest 
design phases of new systems, to quickly compare di!erent architectures 
and use the models as blueprints for development. We validate the e!ec-
tiveness of our technique as a shared language between multidisciplinary 
stakeholders in the context of di!erent co-creation projects that are part 
of the Dutch National Education Lab AI (NOLAI). 
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1 Introduction 

Modern software systems can feature complex data processing, with multiple par-
ties processing various data for di!erent purposes, including training or applica-
tion of AI. Development of such complex systems typically involves a multidisci-
plinary team (e.g. development, engineering, legal, governance, ethics, business) 
with various backgrounds, viewpoints and concerns [ 9, 10]. Since many privacy 
features can only be e!ectively realized by a combination of technical, physical, 
organizational or legal measures, there can be important interactions between 
the di!erent disciplines. Currently, however, these stakeholders often work in 
isolation [ 14]. This makes designing and communicating about such complex 
systems challenging: there can be misconceptions, inconsistencies or (at best) 
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simply inefficiency. Modern (i.e. agile) system development methods, or even 
modern design methods like participatory design, co-design or co-creation [ 11], 
and the intangible nature of software only amplify this. To prevent this requires 
a simple, standardized, shared language between all stakeholders that can be 
used from early in the design process and onward. 

While Data Flow Diagrams (DFDs) are the de facto standard for modeling 
data processing systems, they lack standardized notation for specific fundamen-
tal forms of data processing, such as data deletion, distribution, encryption 1
(e.g. end-to-end encryption, homomorphic encryption and encryption at rest) 
and anonymization/pseudonymization. We argue that these concepts are so fun-
damental to privacy and (consequently) have so many multidisciplinary interac-
tions (i.e. they are relevant not only to technical stakeholders), that standard-
ized notation is required to e!ectively use these diagrams as a shared language 
between multidisciplinary stakeholders. 

We therefore introduce an extension of DFDs, called Data Processing Dia-
grams (DPDs), that give a more complete overview of data processing in a 
system, focussed on privacy, while maintaining a high abstraction level. Specifi-
cally, we aim to express well-known privacy design strategies [ 6] and tactics [ 3] 
in our models. We also provide relatively simple (informal) definitions for iden-
tifiability, linkability and pseudonymity to characterize data, that are aimed to 
be understandable by di!erent stakeholders. 

Based on the DPD of a system, specific high-level, fundamental system prop-
erties can easily be derived, such as which components (or subsystems, or as we 
will more generally prefer, contexts) could get access to which data (i.e. infor-
mation flow analysis between systems). As such, a quick privacy assessment of 
a (proposed) system architecture can be made, comparing di!erent architec-
tures. This can be done completely model-based using only the information in 
the DPD and without additional background information about specific compo-
nents. While this quick analysis is in no way an alternative to exhaustive threat 
modeling using popular frameworks such as LINDDUN [ 4, 16] or STRIDE [ 7, 13], 
we consider this especially useful during the design of new systems when models 
are used as blueprints and no concrete system details are yet decided. 

We consider our models to function as an e!ective shared language between 
multidisciplinary (not just technical) stakeholders to unambiguously communi-
cate about the most important features of a complex system’s data processing 
architecture. We validate our modeling technique in the context of NOLAI, the 
Dutch National Education Lab for Artificial Intelligence, by modeling seven co-
creation projects using input from various stakeholders, of which we present a 
concrete example in Sect. 8. 

1.1 Complex Data Processing Systems 

We consider our modeling technique to be usable for what we will call complex 
data processing systems, similar to complex systems in other fields of science. The
1 DFDs typically only consider point-to-point encrypted data flows between two com-
ponents (encryption in transit), but not encryption across multiple components. 
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primary goal of complex data processing systems is to process (e.g. collect, store, 
transform, combine, aggregate, exchange) either personal data about multiple 
data subjects, or otherwise sensitive non-personal data. 

The complexity lies in that various actors (e.g. legal entities) are involved in the 
system (including, for example, cloud service providers), processing di!erent data 
for diverse types of functional purposes, in multiple more-or-less autonomous sub-
systems, possibly with multiple distributed instances of them. For example, data 
may be used for (1) the basic operation of an application within an organization, 
(2) centralized training of an AI model, based on data from multiple organizations 
and (3) validating the e!ectiveness of the application. 

More generally, data processing takes place in a variety of di!erent (types 
of) contexts, such as legal, physical, organizational, or functional-purpose con-
texts. Di!erent stakeholders are typically interested in di!erent types of con-
texts. For all these di!erent contexts, di!erent policies for data protection may 
be required. As a result, systems may deploy specific Privacy Enhancing Tech-
nologies (PETs), including di!erent forms of encryption, pseudonymization or 
anonymization, resulting in data with di!erent degrees of identifiability, linkabil-
ity or pseudonymity. This makes analyzing the privacy and security properties 
of such systems challenging. 

1.2 Related Work 

Our DPDs extend popular DFDs [ 5], that, are also used in popular (techni-
cal) threat modeling frameworks such as LINDDUN [ 4, 16] and STRIDE [ 7, 13]. 
Because of this, our DPDs can directly serve as input for analysis with these 
frameworks, only providing more information. 

During threat modeling using these frameworks, all DFD components and 
possible threats to them are systematically identified and assessed. This, how-
ever, requires background knowledge about components that may not be avail-
able from just the DFD itself. For some types of threats, this can be very fun-
damental. For example, there is a fundamental di!erence in privacy risk assess-
ment between a regular data store, and one that stores encrypted data. In a 
DFD, however, they are displayed as the same component. Our DPDs are able 
to distinguish these fundamental di!erences. 

We consider this especially useful during early system design, when details 
about the underlying components are not yet known and the model is used as a 
blueprint to describe which system architecture should be developed. Our DPDs 
allow for a fully model-based architectural risk assessment. Comparing di!erent 
models, instead of threat modeling where the model (i.e. a DFD) only guides 
the process but cannot replace knowledge of a concrete system. 

Some other extensions to DFDs have been proposed to incorporate specific 
notions of privacy. PA-DFDs [ 1], for example, extend DFDs with purpose labels 
to describe the purpose for processing data, aiming to model purpose limitation. 
Sion et al. [ 14] proposed further DFD extensions for legal concepts and abstrac-
tions. While those extensions serve their own specific (analytical) purpose (and 
could be used in combination with our extensions), they are not able to display
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the fundamental forms of data processing required to reflect well-known privacy 
design strategies (see Sect. 4) in early system design. 

2 Background 

Our modeling technique extends well-known Data Flow Diagrams (DFDs) [ 5], 
consisting of directed graphs of processes, data stores and external entities, with 
data flows between them. While many grammar rules can be defined for these 
diagrams [ 2, 8, 12], we conveniently consider the following informal rules: 

External entities are sources or destinations of data and are further not in 
scope of the system. 
Processes do not store data (i.e. for any time longer than the lifetime of the 
processing itself). 
Data stores do not transform data. 
Any data flow has a process or external entity as either its input or output. 

The three main components of a DFD precisely capture all three states of 
data: data at rest (data stores), data in use (processes) and data in transit 
(data flows). This makes data processing tangible: at the lowest abstraction 
level, it should be possible to physically pinpoint exactly where each component 
stores, processes, or transfers data. This results in practical completeness of 
our models at the lowest abstraction level. Notably, DFDs are also technology-
agnostic: they can be used to model both digital data processing by software, 
but also non-digital or manual processes, which is important for a holistic view 
of data processing that is required for valid (sound) analysis. 

DFDs can be made at di!erent abstraction levels, with the highest abstrac-
tion level displaying the whole system as a single process and only displaying the 
external entities the system interacts with (sometimes called a context diagram). 
Every process (and arguably also every data store) can be unfolded into mul-
tiple sub-processes and data stores, with flows between them. 2 This refinement 
is crucial for iterative design and communication with di!erent stakeholders, 
where certain (high-risk) components can be unfolded and collapsed depending 
on every stakeholder’s concerns and background knowledge. 

3 Data Properties in DPDs 

While only modeling the interaction between di!erent components in a system 
itself can already be interesting for some stakeholders, this does not exactly 
describe what data is being processed. In order to fully describe this and assess 
risks, one must describe the exact contents of each data flow as the inputs and 
outputs of each component. On many abstraction levels, however, this may not 
be feasible nor desirable. This is especially the case during system design, when 
only a high-level model is available. Instead, it could be useful to focus on specific 
properties of data and display these properties using special symbols.
2 External entities cannot be refined, as their internals are by definition out of scope. 
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The exact properties to consider can di!er per use case and involved stake-
holders, depending on what properties we consider to have inter-stakeholder 
interactions and be interesting for further analysis, but may often include identi-
fiability and linkability, especially when applying pseudonymization, anonymiza-
tion or other PETs in the system, since they have consequences for multiple 
types of stakeholders. These properties are also fundamental to LINDDUN’s 
main threat types [ 4]. For more specific use cases, other properties like repudia-
bility (if non-repudiation is a desired system property) may also be interesting, 
or even very domain-specific properties like the nationality of data subjects 3. 
Apart from that, it can be useful to describe data with a general category (such 
as medical, financial or generally sensitive). As a first step in the modeling pro-
cess, the relevant data properties between all stakeholders should be established. 

3.1 Identifiability, Linkability and Pseudonyms 

We specifically propose some practical, relatively simple definitions for identifi-
ability and linkability (with corresponding graphical representations), because 
of their interplay and since they are fundamental to privacy and a!ect almost 
all viewpoints in some way. 

It is hard to precisely define the identifiability of data. While some data may 
be non-identifiable to most, it could be identifiable to others that have the ability 
to link data with other identifiable data, making the data indirectly identifiable 
ultimately. The concepts of identifiability and linkability are thus closely related. 

We also discuss pseudonyms as a special form of linkability and as a 
simple yet powerful PET without irreversible loss of data utility. By properly 
using pseudonymization, namely, one can enforce that di!erent pseudonymous 
(sub)sets of data cannot be recombined even if one or more parties or components 
in the system are compromised. 

Existing (e.g. mathematical) definitions for these concepts are more formal 
and strict, but are consequently difficult to understand for many (non-technical) 
stakeholders and less suited to characterize data flows in a larger system. We 
thus seek for a compromise between expressiveness, correctness and simplicity. 

Definition 1 (Identifiability). The extent to which data identifies a natural 
person. We distinguish: 

directly identifiable: data identifies a natural person directly, based on 
publicly available knowledge 

indirectly identifiable: data identifies a natural person, but requires 
some non-public knowledge outside the system 

de-identified: data does not contain any identifiers 4
non-personal: data does not relate to persons at all (Fig. 1)

3 For example, when dealing with various national data processing regulations. 
4 Some may falsely refer to this as ‘anonymous’ data. Truly anonymous data is addi-
tionally unlinkable, or even has any distinguishable statistical features removed. 
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Fig. 1. Example of identifiability annotations. 

Definition 2 (Linkability). The extent to which data can be linked to other 
data based on an equality or known correlation. We distinguish: 

universally linkable: high-entropy data that is considered to have 
universally unique attributes (e.g. biometrics, MAC address) 

locally linkable: limited uniqueness only within the local context (e.g. 
session IDs or data with random noise) 

unlinkable: non-unique data that is thus inherently unlinkable 

Definition 3 (Pseudonymity). A special form of local linkability without 
direct identifiability, where local linkability is introduced through a dedicated 
attribute. Depending on whether data is also indirectly identifiable, we distin-
guish: 

strict pseudonymous: data is pseudonymous but further de-identified 
soft pseudonymous: data is both pseudonymous and indirectly iden-

tifiable (based on other knowledge than the pseudonym) 

Under these definitions, identifiability (either direct or indirect) implies 
universal linkability, but linkability does not imply identifiability. De-
identified but linkable data, this way, can become (either directly or indirectly) 
identifiable after linking with other (directly or indirectly) identifiable data. 

All definitions are relative to some extent and require assumptions on other 
publicly available data outside the system. For example, DNA samples are obvi-
ously unique and would identify a data subject in that sense. However, if we do 
not assume DNA samples to be publicly available information (which is gener-
ally the case), we will not classify a DNA sample as directly identifiable, but 
rather universally linkable and indirectly identifiable, or even de-identified if we 
consider DNA samples to not be available to any party at all. 

The threshold for all definitions can be subjective, too. In case the combi-
nation of postal code and birth year does not relate to a single natural person, 
but to two or three, one may or may not consider this data identifiable, depend-
ing on the use case. During modeling, stakeholders should agree on reasonable 
assumptions on these matters.
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3.2 Implicit Data 

When characterizing data flows, it is crucial to also consider implicit (meta)data, 
especially when talking about identifiability and linkability. A person’s first 
name, for example, can hardly be considered identifiable in a global data set, 
but within a data set of employees of a specific department it most definitely can 
be! In this case, the department of employment is implicit data, that should be 
derived from the local context of the processing. Similarly, any data originating 
from a specific known personal device can be considered linkable to that device 
and perhaps identifiable. A specific example is real-time data, where the times-
tamp of interaction could be considered a linkable or even identifiable, implicit 
attribute, for which we propose special annotation ( ). 

4 Privacy Design Strategies 

In 2014, Hoepman published an overview of eight privacy design strategies [ 6], 
with various underlying privacy design tactics [ 3], based on a large litera-
ture study. They are considered to form a complete overview of (high-level) 
approaches to privacy-friendly data processing that can categorize PETs. Specif-
ically, Hoepman distinguishes four data-related and four process-related strate-
gies, with the first category focussing on the actual system architecture and the 
latter category on more peripheral procedures for governance and compliance. 
In this section, we show the DFD extensions required to distinguish the four 
data-related strategies and underlying tactics. 

From the in total four data-related strategies, Hoepman identifies two strate-
gies (Separate and Hide) to limit the chance of “privacy violations” in a system, 
and two (Minimize and Abstract) that limit the impact of such violations [ 6]. 
Orthogonally, two strategies (Hide and Abstract) a!ect the actual data being 
processed itself, and two strategies (Separate and Minimize) that a!ect the 
way the processing of data is organized. 

Change infrastructure Change data 
Reduce impact Minimize Abstract 
Reduce chance Separate Hide 

Minimize. The Minimize strategy simply entails to process only the data 
that is strictly necessary for the purpose. This can mostly (for the Select, 
Exclude and Strip tactics) be expressed in our models by annotating the data 
flows between components with data properties, describing what kind of data is 
being processed and resulting in fewer data being processed. 

For the Destroy tactic, deleting data from a data store, however, we intro-
duce a new (complemental) type of data flow, that deletes data from a data
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Fig. 2. Notation for data deletion. 

store (see Fig. 2) 5. As a result of making data deletion explicit, it is possible to 
highlight components where data is stored but never deleted, possibly resulting 
in orphaned data. 

Abstract. The Abstract strategy, consisting of the Summarize and Group 
tactic, can also be expressed in our models by annotating the data flows with 
data properties, describing exactly what kind of data is being processed, with 
data being transformed to be less sensitive, identifiable or linkable. 

Separate. The Separate strategy aims to not process (or store) data at a 
single place, but split it over di!erent components, thus reducing the impact in 
case of compromise (“violation”) of one of them. This concerns two tactics, Dis-
tribute and Isolate. Isolation is reflected by having multiple di!erent types 
of components processing di!erent types of data, which can easily be reflected 
in our models. Distribution, on the other hand, considers the usage of multi-
ple instances of the same type of (sub)system or component for di!erent data 
subjects. The existence of such components is also typically a characteristic of 
complex data processing systems, as defined in Subsect. 1.1. 

In a classical DFD, every store, process or external entity typically represents 
a di!erent type of component. Any distribution of instances is left implicit or 
must be specified in natural text, which could leave room for ambiguities. We 
therefore introduce notation to display multiple instances of the same component 
type that are separated (Fig. 3) to a certain extent. Related to the distributed 
components, refinement (unfolding) might result in a subset of components that 
together functions as an independent subsystem. 

For each distributed component or subsystem, the variable or level of distri-
bution should be specified. This could, for example, be the data subject-level or 
organization-level, with one instance of the subsystem for every data subject or 
organization respectively. This distribution can also be nested. 

Hide. Finally, the Hide strategy consists of the Restrict, Mix, Dissociate 
and Obfuscate tactics. On an architectural level, the Restrict tactic considers 
employing an access control process, which as such can directly be reflected in our 
model, but does not influence other architectural features of data processing in a 
system. Similarly, the Mix and Dissociate tactics are also displayed by specific 
centralized processes resulting in data with limited linkability or identifiability,

5 Data deletion flows only work towards a data store! 
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Fig. 3. Notation for (n) distributed components. 

or eliminating (real-time) linkable data flows. Cryptographic technologies such 
as di!erential privacy also fall under these tactics. 

The Obfuscate tactic, however, is observed in cryptographic processes, 
encrypting the data and hiding it across part of the processing, towards those 
unable to decrypt it. 

In regular DFDs, data flows are point-to-point between two components 
(stores, processes or external entities). When encryption is applied, this encryp-
tion is typically considered to be point-to-point too, and not end-to-end (across 
multiple components). 

When data is end-to-end encrypted while flowing through multiple compo-
nents, there are di!erent ways of modeling this. Either, the DFD only describes 
the high-level data flow between the two endpoints and ignores the existence of 
all underlying infrastructure, or, more commonly, we ignore the fact that end-
to-end encryption is applied and only keep it in the back of our mind when using 
the DFD for further analysis (perhaps by including some ad-hoc annotations). 
Finally, one could include explicit encryption, decryption, and key management 
processes in the model. This, however, would require a lower abstraction level 
and making the model more complex to analyze. 

Therefore, we introduce abbreviated notation for end-to-end encrypted data 
flows across multiple components (see Fig. 4). Across a data store, this is known 
as ‘encryption at rest’. Across a process, transforming the data while being 
encrypted, this is known as ‘homomorphic encryption’. Finally, we also intro-
duce notation for multiparty computations (MPC) as a distributed process on 
encrypted data. 

Notice that in the abbreviated notation, key management is ignored, since 
we consider this a technical detail that is not relevant at higher abstraction 
levels. For MPC, notice the slightly di!erent notation than for (normal) simple 
distributed components (see Fig. 3), since for MPC the individual nodes are 
not fully isolated from each other and are not autonomous. Annotations should
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Fig. 4. Abbreviated notation for cryptographic components. 

display to what extent the di!erent nodes of an MPC process are separated, 
or alternatively, MPC processes can be displayed in more detail as distributed 
processes. 

5 Context Boundaries 

The STRIDE security threat modeling framework [ 7] introduced the concept of 
trust boundaries to Data Flow Diagrams, to indicate where in a system trust 
levels are changing and, for example, a di!erent threat model must be consid-
ered. This typically considers the location of a component in the system, either 
physical or logical (as part of a larger system, network, etc.). The LINDDUN 
privacy threat modeling framework [ 16] also briefly mentions trust boundaries, 
without really describing a specific meaning to them, but similar boundaries 
could be considered (e.g. legal boundaries). 

In complex data processing systems, as described in Subsect. 1.1, typically 
many (and many types) of these boundaries exist, which we referred to as con-
texts. We therefore generalize the term trust boundaries to context boundaries, 
where di!erent contexts might be identified by di!erent characteristics, includ-
ing but not limited to technical or organizational trust. Exactly which context 
boundaries to consider can di!er per use case, similar to which data proper-
ties one should consider as discussed in Sect. 3. Examples could include physical 
locations, technical or logical separated units (such as di!erent system users, 
devices, or networks), legal or organizational responsible entities, or natural per-
sons being actors in or having access to components. 

By specifying context boundaries, di!erent (types of) contexts are estab-
lished, resulting in two ways of visualizing them (see Fig. 5). These di!erent 
contexts could be considered as separate overlays on a single base model. Mul-
tiple distributed instances of contexts can also exist. 

It is important to notice that with refinement of diagrams, unfolding or col-
lapsing (groups of) components, it is possible that at higher abstraction levels 
context boundaries cannot always be exactly drawn between distinct compo-
nents. This results in rather blurry context boundaries somewhere inside a store 
or process, or components being in multiple contexts (of the same type). For
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Fig. 5. Di!erent ways to display contexts (blue) or context boundaries (red). (Color 
figure online) 

some types of contexts, it is also possible that components are fully part of mul-
tiple contexts at any abstraction level (such as processing purpose or legal entity 
responsible, in case of shared responsibility between multiple parties). We con-
sider this a feature of our models, indicating that more refinement is required, 
or that a component requires extra attention. 

5.1 Alignment 

As already originally mentioned for STRIDE, where data crosses a trust bound-
ary, certain mitigating measures (e.g. technical, legal) may be required. Addi-
tionally, we argue that it is exactly where di!erent types of contexts do not align 
with each other, where extra attention is required during system design. 

As an example (Fig. 6), the paper archives (data store) from organization A 
(legal) may be located in the building of organization B (physical). The physical 
and legal context boundaries do not align. It may thus be possible for organi-
zation B to physically get access to the stored data from organization A before 
process 2 (perhaps, anonymization) has been performed, which perhaps should 
be resolved by contractual agreements forbidding it, or physical or technical 
measures, such as placing it in a vault or applying encryption. Here, the inter-
play with encrypted data flows as discussed in Sect. 4 becomes apparent, since 
an end-to-end encrypted data flow e!ectively may not pass a context boundary 
while a regular flow does. 

Inspecting components where context boundaries do not align or are not 
clearly defined, especially when processing sensitive or identifiable information, 
allows for prioritized (and thus, more efficient) refinement of a DFD to lower 
abstraction levels during system design.
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Fig. 6. Two types of context boundaries that are not aligned. 

6 System Properties 

Based on our DPDs, specific system properties can be derived, using basic graph 
theory. This can be useful to make specific (privacy) claims about forms of data 
processing that does not 6 (or cannot, because data is not linkable) take place in 
the system. For example, one could make statements about: 

Which components or contexts process which types of data (i.e. where data 
flows from one context to another) 
The existence of data stores where data is not being deleted 
To which degree specific types of data are processed centrally or decentrally 
Components that do not align with di!erent context boundaries 
Whether di!erent data could be combined within a context, based on linka-
bility of the data 

Special attention could go out to system properties assuming compromise 
of one or more contexts, making sure that specific properties still hold after 
compromise by considering the transitive closure of the graph. 

Based on this analysis, high-risk components could be identified, which could 
then be further refined, until so many details are described that the residual risk 
either can be accepted, or the risk is mitigated in another way. Ongoing research 
by the authors focuses on more formal methods for analysis, risk assessment and 
model refinement during system design using these data processing diagrams. 

7 Evaluation 

Our modeling technique is being used in the Dutch National Education Lab AI 
(NOLAI). At NOLAI, every year, about 10 new three-year co-creation projects 
start (e3M per year), aiming to combine academic research towards AI in edu-
cation with software product development. Currently, 17 projects are running, 
and another 80 are expected for the coming years. In these projects di!er-
ent stakeholders from education, industry, and academia are involved. Many

6 We can only make negative claims, since components might be unavailable, poten-
tially blocking any data processing. 
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projects feature a scientific experiment that builds on existing platforms, mak-
ing the responsibilities and risks hard to manage. As such, these projects are 
typical examples of complex data processing systems. To organize data process-
ing responsibly in all these di!erent contexts, various measures are implemented, 
including pseudonymization and di!erent forms of encryption, both in transit 
and at rest. 

The authors have modeled eight of these co-creation projects, mostly in the 
early stages of the development process. This was done in collaboration with var-
ious stakeholders, including researchers (in di!erent academic fields), co-creation 
managers, legal experts, software engineers and ethicists. 

While not all stakeholders, especially not those without a technical back-
ground, were able to actively create these models from scratch, all were able 
to understand the models when creating them together with a more techni-
cal expert. Moreover, after working with them for a while and with help of 
templates and examples, most were able to create and interpret simple models 
independently. Meanwhile, for the more technical stakeholders, the models were 
unambiguous and contained enough information to perform some high-level risk 
analysis and compare di!erent designs based on their privacy properties. 

More importantly, authors have experienced that the process of creating a 
DPD required stakeholders to critically think about data processing and define 
scopes. Making the models identified unclarities or ambiguities and forced stake-
holders to address those, early in the process. More than once, the modeling 
process resulted in di!erent versions of the system between which a choice had 
to be made, of which many stakeholders were previously unaware. As such, the 
models functioned as a starting point for discussion between stakeholders, and 
e!ectively served as a shared language. 

Anecdotally, for several projects, incompatibilities were discovered during 
modeling, for example where processed anonymized data had to be returned to 
the original data subjects, or where no procedures were designed to transfer data 
between two stores (which, in practice, resulted in people using insecure email to 
transfer sensitive data). The simple process of creating these models, highlighted 
these blind spots. 

In future research, authors plan to further incorporate the modeling tech-
nique into a structured design methodology, and validate the e!ectiveness of the 
methodology over a period of multiple years of development of a system. 

8 Example 

As a concrete example, we present NOLAI’s VIAT (Video Interaction Analysis 
Tool) project. In the VIAT project, software is developed to analyze in-classroom 
video footage for teacher’s training purposes, such as detecting moments that 
a teacher answers or ignores a student’s question. Data processing includes the 
recording, storage and playback of videos, as well as analysis (creating reports) 
using AI models. Additionally, to develop the tool, selected recorded videos are 
annotated and used to train these models. VIAT is tested and developed in pilots
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at primary schools, and the e!ectiveness is studied using interviews and analysis 
of additional data sources by researchers from NOLAI, potentially in multiple 
independent studies. 

Di!erent (legal) organizations are involved in the processing, including sev-
eral schools, commercial parties (for both the recording platform and AI anal-
ysis), cloud service providers and a research institute. As such, data processing 
takes place in di!erent contexts. In this example, we will focus on legal contexts. 

There are several desired privacy features for these contexts. For example, 
scientific data analysis may only use pseudonymous data. Also, AI model training 
should not receive identifiable data. Preferably, recorded videos are not accessible 
to anyone except the school. Finally, the commercial party may not receive the 
data collected in the scientific context. 

In Fig. 7, we present two DPDs for two possible data processing architectures 
for the VIAT project, where one has obviously stronger privacy guarantees than 
the other (see captions). Notably, the DFDs for both architectures would be the 
same, illustrating the added value of DPDs over DFDs. 

9 Future Work 

As presented in Sect. 6, our diagrams can be used to systematically derive system 
properties based on annotations of data types and assumptions on underlying 
components as in Sect. 3. To derive more specific properties, more strict mathe-
matical definitions such as k-anonymity [ 15] could be considered and algebraic 
rules for such properties, based on these diagrams, could be built. 

When using data processing diagrams during system design, a structured for-
mal method for risk assessment can also be considered, systematically identifying 
high-risk components and refining them or mitigating risks. While we did show 
the completeness of our modeling technique with respect to well-known privacy 
design strategies and tactics [ 3], choosing which tactic to apply while designing 
a system, requires thought-out decisions. Future research can focus on designing 
systematic methodologies to apply specific tactics and identify common privacy 
design patterns and antipatterns, implementing specific measures. 

A di!erent application of our diagrams could be in the analysis of energy 
consumption of (software) systems, which is, next to privacy and security, also 
an important factor in implementing data processing sustainably. 

Finally, it would be interesting to see to what extent Data Processing Dia-
grams, at a high abstraction level, can be used as a communication tool for 
non-expert users (or data subjects) to o!er transparency about data processing.
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(a) A strong privacy architecture, with mostly decentralized data processing at schools 
(except video analysis), encrypted cloud storage per school, model training on de-
identified data, and pseudonymization for research. 

(b) A weak with fully centralized data processing by the commercial party and cloud 
provider, with no encrypted storage at the cloud provider, involving model training 
on identifiable data and lacking pseudonymization. 

Fig. 7. DPDs of two possible architectures for the VIAT project, with data identifia-
bility annotations.
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10 Conclusion 

We introduced Data Processing Diagrams, a modeling technique for privacy in 
complex data processing systems, based on well-known Data Flow Diagrams. The 
extensions for data deletion, distribution, encryption, together with annotations 
of identifiability, linkability and pseudonymity of data, are able to reflect appli-
cation of well-known privacy design strategies [ 6] and tactics [ 3]. The resulting 
models allow for unambiguous communication between multidisciplinary stake-
holders (e.g. security, legal, management, ethics, development and engineers) 
about privacy and data processing in a system, at di!erent abstraction levels. 
Moreover, specific system properties can be derived from these models. Authors 
have experienced the models to be e!ective tools in the system development pro-
cess, helping to derive system properties and perform risk assessment or threat 
modeling. In future research, our modeling technique can be further formalized 
to derive more specific system properties in a systematic way, based on more 
formal definitions, and perform risk assessment to e!ectively implement specific 
design patterns for improved privacy. 
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