
REMOTE DOCUMENT 
ENCRYPTION IN 
FILESENDER
Job Doesburg



The FileSender project

https://filesender.org

Upload large files and make them available for downloading

Large data sets, or sensitive data

Anything you don’t want to have in your email attachments

SURF also doesn’t want to see this data

End-to-end encryption based on passwords (and PBKDF2)

2

https://filesender.org/


3

Key management with FileSender

Dear Bob,

I have uploaded the files via filesender. 
They are available to you via the following URL: 
https://filesender.surf.nl/?s=download&token=374d576a-78b1-11ed-a1eb-0242ac120002

In order to download the files, you will need the following password:
XlKlJQ5HFxpFUoolAQTbfWBbzXLbML

Best regards,
Alice

https://filesender.surf.nl/?s=download&token=374d576a-78b1-11ed-a1eb-0242ac120002


A solution

Asymmetric keys?

Over the whole internet?

… PGP?

If only there existed some PKI for verifying the identity of any person in the world…

4



An international PKI

E-passports (ICAO 9303) with NFC

Also ID cards, (drivers licenses…)

5



Remote Document Encryption (Verheul, 2017) in a nutshell

6

“Passport as a Yubikey”



Benefits of RDE for SURFfilesender

Asymmetric key establishment

Download token + key from passport means 2FA-like behaviour for downloading

‘People already have an e-passport’ (and an NFC capable phone)

Use government PKI to confirm identity of recipient
(when using RDE with document holder authentication)

7



The trick behind RDE

Based on a weakness in existing protocols…

Passport can perform Chip Authentication (CA): ECDH key establishment

Passport key is fixed (signed by country)

Only reader key is ephemeral

After CA, passport communicates with keys, deterministically derived from ECD

No freshness

If a reader selects the same ephemeral key twice, and reads the same data group 
twice, it results in the same ciphertext!

Use ciphertext as secret key

8



The trick behind RDE

Known from enrollment: passport public key + plaintext DG14

Senders choose ephemeral key pair

Generate shared secret (passport public key × sender private key)

Emulate passport ciphertext response to a READ command (known plaintext)

Forms decryption parameters:

Ephemeral sender public key

Emulated ciphertext READ command

Upon decryption, reader sends sender public key

Passport generates shared secret (sender public key × passport private key)

Responds to READ command with same ciphertext

9



The trick behind RDE

10



Document holder authentication

Upon enrolling, not only publish static passport CA public key and contents of one 
data group (DG14)

Also include: 

DG1 (MRZ-data): name, date of birth, nationality, etc

DG2: facial image?

EFsod: signatures, hashes and certificates to verify everything is legitimate

Verify certificate chain against CSCA certificates

Dutch National Public Key Directory (https://npkd.nl)

Sender can verify in-browser, no need to actually trust SURF!

Do note the privacy implications!

11

https://npkd.nl/


Limitations

BSN (personal number / social security number) in MRZ-data

Processing is restricted in the Netherlands!

Deal-breaker for SURF

2021 model of Dutch passports and identity cards don’t include BSN

It will take until 2031 for those documents expire…

Until then, no document holder authentication with MRZ data L

Reader application does not store private data itself, but …

… it does receive the secret key

and the ciphertext (that forms the secret key) is sent in the clear over the air 
from passport to reader (so trust the environment too)

12



Infrastructure RDE for FileSender

13



RDE enrollment

14



RDE key generation

15



RDE decryption

16



17

DEMO



Going forward

iOS app

Drivers license support requires small tweaks (and e-residence permits?)

Usability!

User-friendly terminology, explain what’s happening

OCR in the app for BAC / PACE

Key server implementation for production (many decisions to make)

Encrypting for multiple e-passports

Prototype → production is a big step to take

A lot of considerations and configuration options (privacy, key rollover)

18



Further research

Split-key infrastructure

Remote blocking of a lost or stolen document

Possibly even: face scan / liveness check

Would require a certified reader app

Implementing a PIN for unlocking

USB NFC readers

19



QUESTIONS

20

Job Doesburg

job.doesburg@{ru,surf}.nl

demo.rde.filesenderbeta.surf.nl



ADDITIONAL SLIDES



Difference with DigiD passport check

DigiD = authentication

Passport signs DigiD app key

Signature is intended to be published

RDE = encryption

Passport generates encryption key

Encryption key should not be published

Note that at key retrieval, ciphertext is sent in the clear from passport to 
reader over the air, so reader (and its environment!) is trusted

22



Crypto

Most passports use

ECDH with a variety of curves (brainpool320r1 in NL)

AES-256-CBC (or AES-128)

Some passports still use RSA based DH and 3DES

We did not implement support for those documents, but RDE does work

Brainpool320r1 with AES-256-CBC results in 160 bit security for our final secret key 
(Verheul, 2017)

Note that ciphertexts are at most 255 bytes long, with 223 bytes for data

23



Crypto dependencies

TypeScript (JavaScript) library

@peculiar/x509

indutny/elliptic (for ECC on arbitrary 
curves)

indutny/hash.js

rosek86/aes-cmac (for AES-CMAC)

leonardodino/aes-ts (for AES-CBC and 
AES-ECB with no padding)

Note that WebCrypto API cannot be 
used, because it has limited support for 
curves and no AES modes

Kotlin (Java) library

JMRTD

BouncyCastle

24



Links

Demo, source code and report: https://demo.rde.filesenderbeta.surf.nl

Paper E. Verheul (2017): https://arxiv.org/abs/1704.05647

25

https://demo.rde.filesenderbeta.surf.nl/
https://arxiv.org/abs/1704.05647


26

DEMO VIDEO



27

DEMO VIDEO


